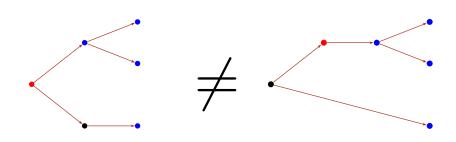
Rhythmic generation of infinite trees and languages

Victor Marsault, joint work with Jacques Sakarovitch

CNRS / Telecom-ParisTech, Paris, France

Journée de rentrée de l'équipe automata, Paris, France 2013–10–11

- 1 Infinite trees, Languages
- 2 Usual generation processes are depth first
- 3 Rhythmic generation process breadth-first
- 4 Reduction to rational bases
- 5 Conclusion and Perspectives



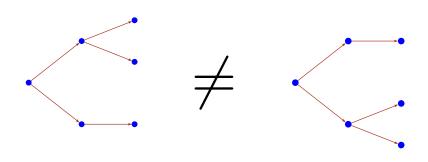
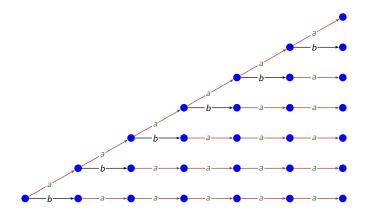
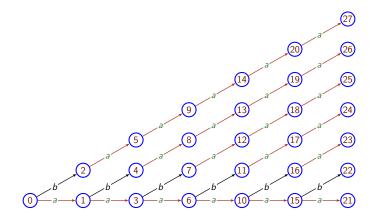


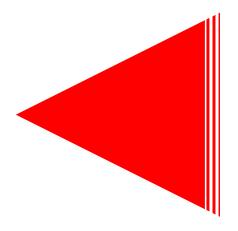
Figure: The langage $a^*ba^* + a^*$ (of the words with 0 or 1 b).

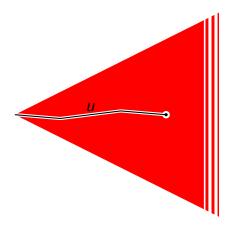


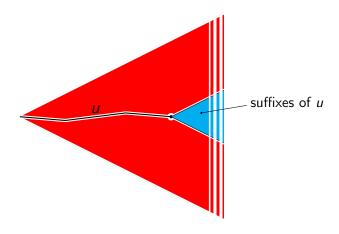
Definition (radix order $<_{rad}$)

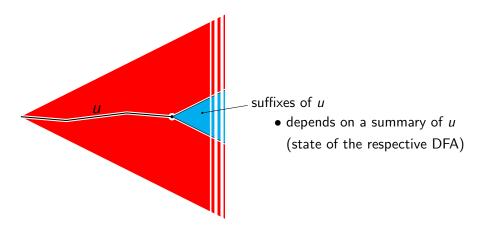
$$u <_{\mathsf{rad}} v$$
 if $|u| < |v|$ or $|u| = |v| \& |u| <_{\mathsf{lex}} |v|$











Theorem

r: a rhythm

(q, p): its directing parameter

(q, p). Its directing parameter $K_{\mathbf{r}}$: the language generated by the rhythm \mathbf{r}

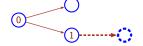
- If $\frac{p}{a}$ is an integer K_r is a rational language.
- If $\frac{p}{q}$ is not integer K_r is a BLIP language.

Definition (rhythm)

 $\mathbf{r} = (r_0, r_1, \ldots, r_{q-1})$

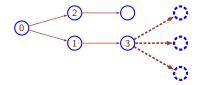
$$\mathbf{r} = (3, 1, 1)$$

$$\mathbf{r} = (3, 1, 1)$$

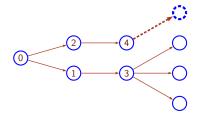


$$\mathbf{r} = (3, 1, 1)$$

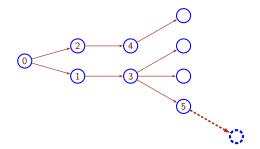
$$\mathbf{r} = (3, 1, 1)$$



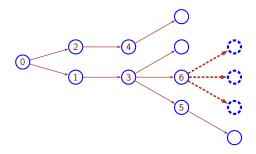
$$r = (3, 1, 1)$$



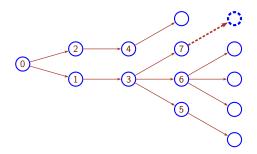
$$\mathbf{r} = (3, 1, 1)$$



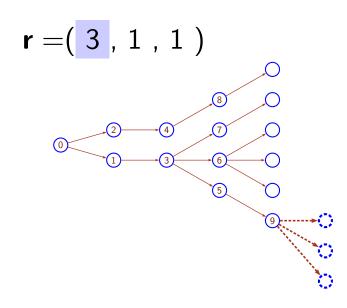
$$\mathbf{r} = (3, 1, 1)$$

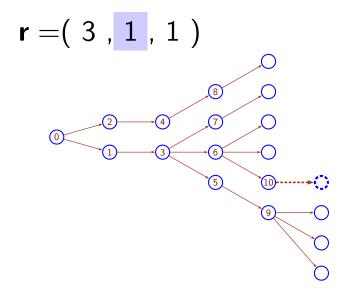


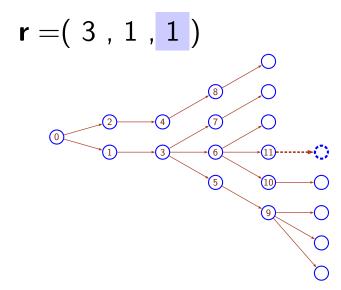
$$\mathbf{r} = (3, 1, 1)$$

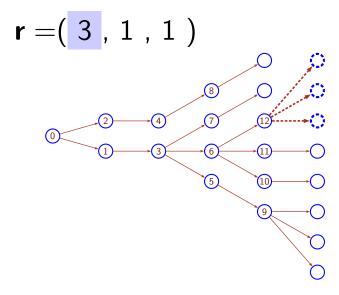


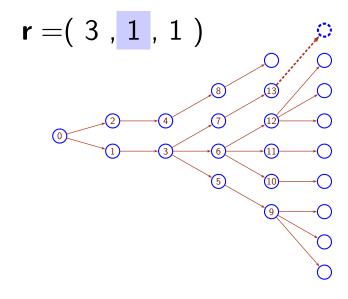
$$r = (3, 1, 1)$$

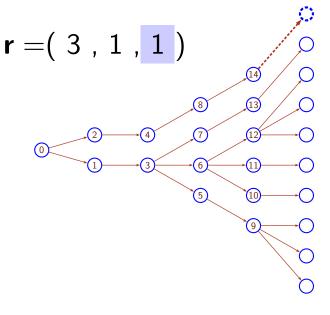












A rhythm
$$\mathbf{r} = (r_0, r_1, r_2, \dots, r_{q-1})$$

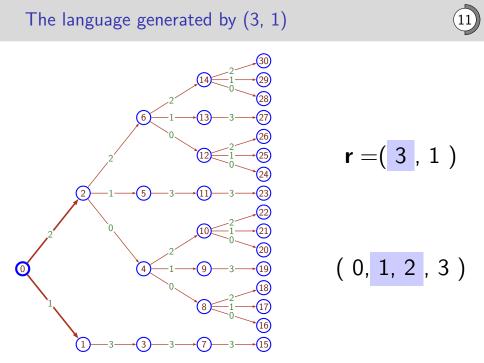
- Directing parameter (q, p):
 - **r** is a *q*-tuple;
 - $p = r_0 + r_1 + r_2 + \cdots + r_{q-1}.$
- Growth ratio: $\frac{p}{q}$
 - Intuition : $\#\{\text{nodes at depth } i\}$ is roughly $\left(\frac{p}{q}\right)^i$

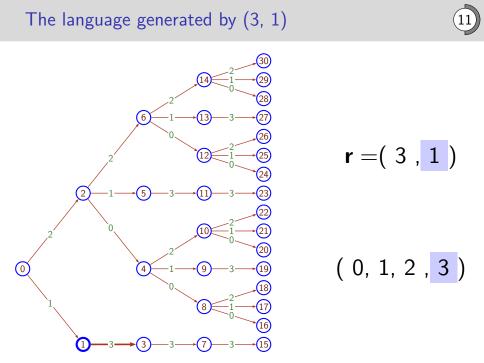
Generating languages by rhythm

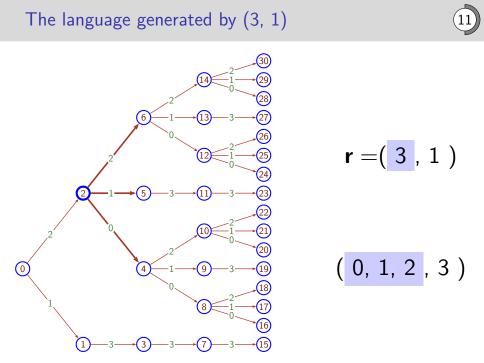
Definition (Naive labelling)

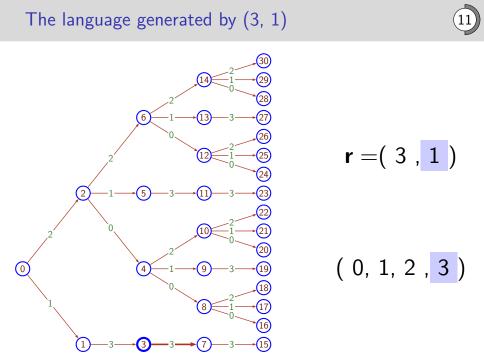
The edge $n \xrightarrow{a} m$ is labelled by $a = (m \mod p)$

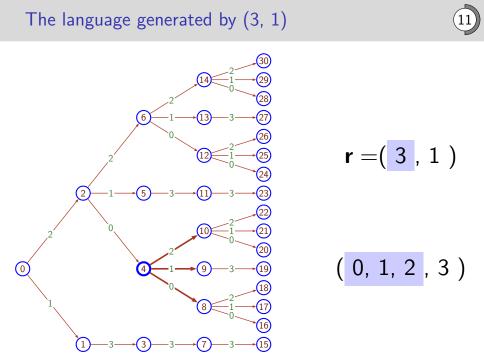
Intuition: The transition labels follows $0, 1, 2, \ldots, (p-1), 0, 1 \ldots$

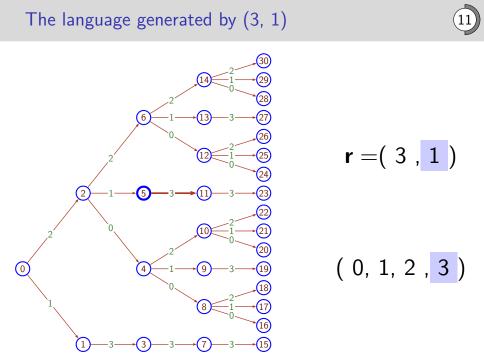


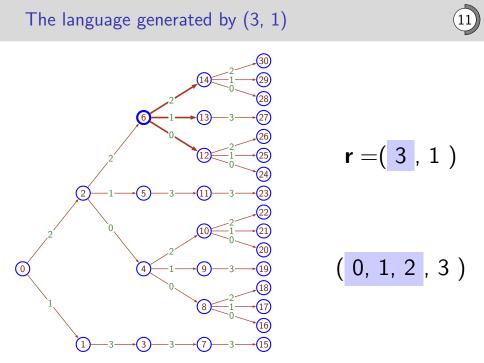


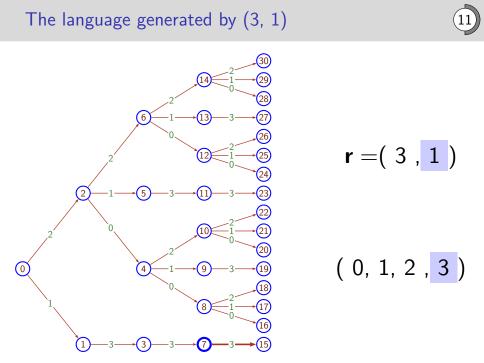


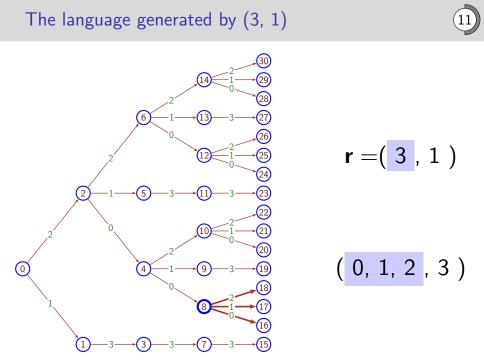


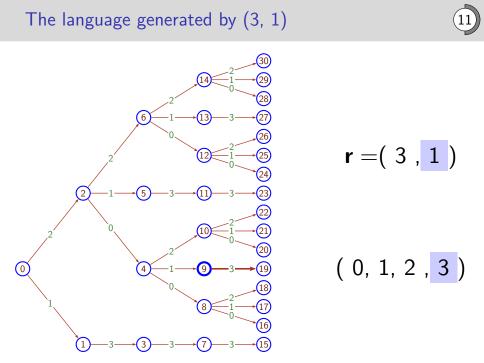


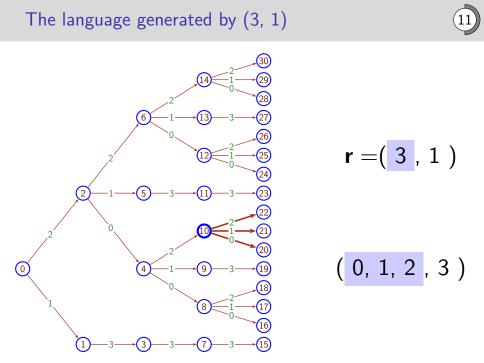


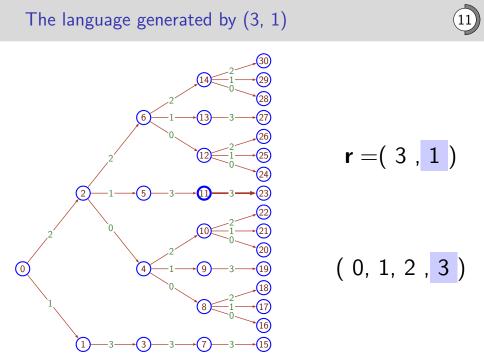


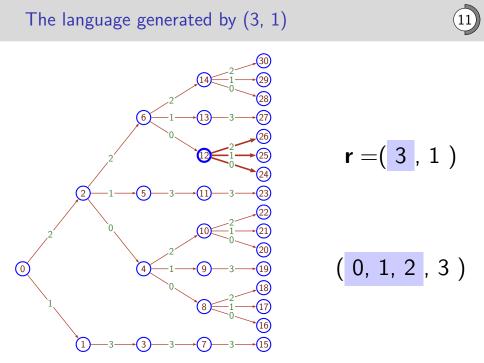


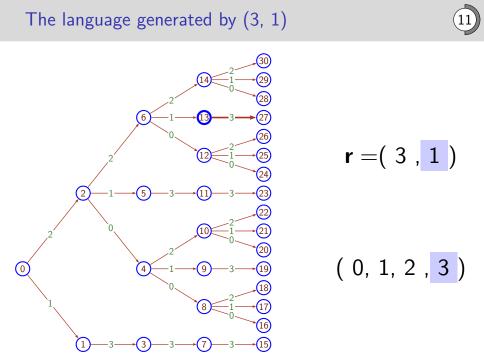


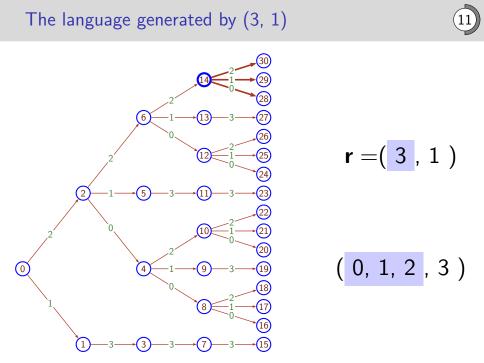








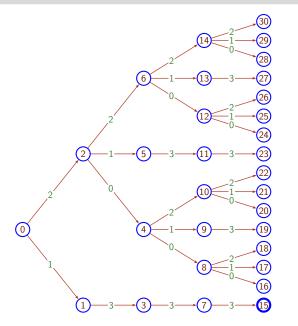




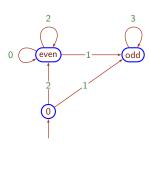
Theorem

- Heorein
- r: a rhythm
- (q, p): its directing parameter $K_{\mathbf{r}}$: the language generated by the rhythm \mathbf{r} .
 - If $\frac{p}{a}$ is an integer K_r is a rational language.
 - If $\frac{p}{q}$ is not integer K_r is a BLIP language.

Taking back the rhythm (3,1)



 $q=2;\ p=4;$ growth ratio $\frac{p}{q}=2$



BLIP languages

A language L is BLIP if

 $\forall u, v \quad \exists \text{ finitely many } i \quad uv^i \text{ is prefix of a word of } L$

Example: all the prefixes of an infinite aperiodic word.

BLIP languages

A language L is BLIP if

 $\forall u, v \exists$ finitely many $i uv^i$ is prefix of a word of L

Example: all the prefixes of an infinite aperiodic word.

Intuition 1

L does not contain an infinite rational language.

[IRS: Greibach 1975]

■ *L* is "hard" to extend to an infinite rational language.

BLIP languages

A language L is BLIP if

 $\forall u, v \exists$ finitely many $i uv^i$ is prefix of a word of L

Example : all the prefixes of an infinite aperiodic word.

Intuition 1

L does not contain an infinite rational language.

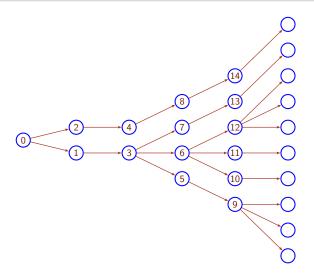
[IRS : Greibach 1975]

■ *L* is "hard" to extend to an infinite rational language.

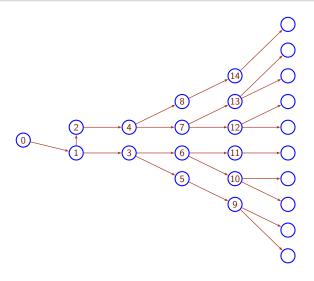
Intuition 2

lacktriangle Every infinite word of the topological closure of L is aperiodic

The tree generated by (3, 1, 1)



The tree generated by (2, 2, 1)



The tree generated by (2, 2, 1)

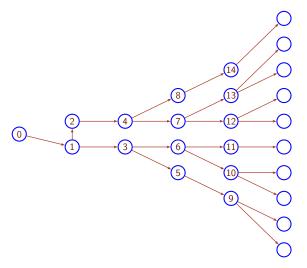


Figure: Underlying tree of the language of integers in base $\frac{5}{3}$

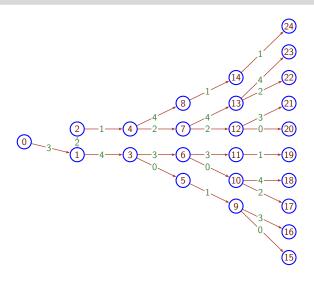
Quick overview of rational base number system

- $\frac{p}{a}$: an irreducible fraction, or base
- A_p : the alphabet $\{0, 1, \ldots, p-1\}$
 - Evaluation: $\pi(a_n \cdots a_1 a_0) = \sum_{i=0}^n (\frac{a_i}{q}) (\frac{p}{q})^i$.
 - Each integer has a finite representation in base $\frac{p}{q}$.

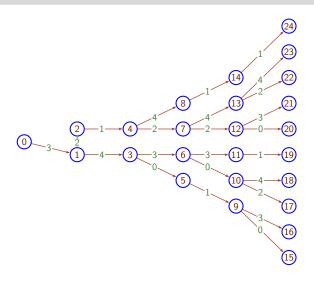
$L_{\frac{p}{q}}$: the language of the representations of integers

- $L_{\frac{p}{a}}$ is prefix-closed and right-extendable.
- $L_{\frac{p}{q}}$ is a BLIP language.

The language $L_{\frac{5}{3}}$



The language $L_{\frac{5}{3}}$



Theorem

The language $L_{\frac{p}{q}}$ is generated by Christoffel rhythm and canonical labelling.

Christoffel rhythm & Canonical labelling

Definition (Christoffel rhythm γ)

- \blacksquare directing parameter (q, p)
- lacktriangle the most equitable way to part q objects into p cases.

Example: (2,2,1) for $\frac{5}{3}$; (2,1,2,1,1) for $\frac{7}{5}$

Definition (Canonical labelling λ)

 $\pmb{\lambda}$ is the *p*-tuple $(0,q,(2q),\ldots,(p-1)q)\pmod{p}$

Example: (0,3,2,4,1) for $\frac{5}{3}$

Conclusion

- A languages built by rhythm is a non-canonical representation of integers in either integer base or rational base;
- They are either rational or BLIP

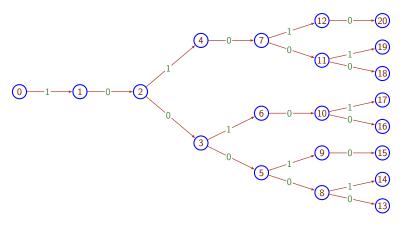
Conclusion

- A languages built by rhythm is a non-canonical representation of integers in either integer base or rational base;
- They are either rational or BLIP

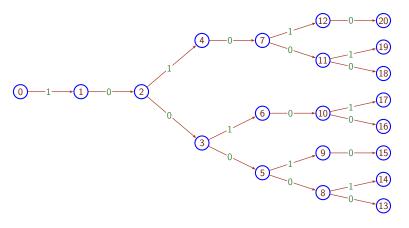
Perspectives

- What happens if we use infinite rhythm instead ?
 - ultimate periodic ⇒ probably the same as finite rhythm
 - \blacksquare aperiodic \Longrightarrow ??
- What happens if we use an automata-like structure?
- Which rational languages can be generated by rhythm?

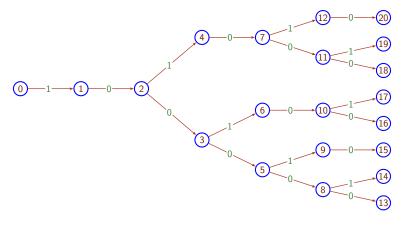
2



2 1



2 1 2



2 1 2 2

